Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biomed Eng ; 3(1): 10, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099062

RESUMEN

BACKGROUND: In response to supply shortages caused by the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs or "masks"), which are typically single-use devices in healthcare settings, are routinely being used for prolonged periods and in some cases decontaminated under "reuse" and "extended use" policies. However, the reusability of N95 masks is limited by degradation of fit. Possible substitutes, such as KN95 masks meeting Chinese standards, frequently fail fit testing even when new. The purpose of this study was to develop an inexpensive frame for damaged and poorly fitting masks using readily available materials and 3D printing. RESULTS: An iterative design process yielded a mask frame consisting of two 3D printed side pieces, malleable wire links that users press against their face, and cut lengths of elastic material that go around the head to hold the frame and mask in place. Volunteers (n = 45; average BMI = 25.4), underwent qualitative fit testing with and without mask frames wearing one or more of four different brands of FFRs conforming to US N95 or Chinese KN95 standards. Masks passed qualitative fit testing in the absence of a frame at rates varying from 48 to 94 % (depending on mask model). For individuals who underwent testing using respirators with broken or defective straps, 80-100 % (average 85 %) passed fit testing with mask frames. Among individuals who failed fit testing with a KN95, ~ 50 % passed testing by using a frame. CONCLUSIONS: Our study suggests that mask frames can prolong the lifespan of N95 and KN95 masks by serving as a substitute for broken or defective bands without adversely affecting fit. Use of frames made it possible for ~ 73 % of the test population to achieve a good fit based on qualitative and quantitative testing criteria, approaching the 85-90 % success rate observed for intact N95 masks. Frames therefore represent a simple and inexpensive way of expanding access to PPE and extending their useful life. For clinicians and institutions interested in mask frames, designs and specifications are provided without restriction for use or modification. To ensure adequate performance in clinical settings, fit testing with user-specific masks and PanFab frames is required.

2.
Sci Rep ; 11(1): 2051, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479334

RESUMEN

The COVID-19 pandemic has led to widespread shortages of personal protective equipment (PPE) for healthcare workers, including of N95 masks (filtering facepiece respirators; FFRs). These masks are intended for single use but their sterilization and subsequent reuse has the potential to substantially mitigate shortages. Here we investigate PPE sterilization using ionized hydrogen peroxide (iHP), generated by SteraMist equipment (TOMI; Frederick, MD), in a sealed environment chamber. The efficacy of sterilization by iHP was assessed using bacterial spores in biological indicator assemblies. After one or more iHP treatments, five models of N95 masks from three manufacturers were assessed for retention of function based on their ability to form an airtight seal (measured using a quantitative fit test) and filter aerosolized particles. Filtration testing was performed at a university lab and at a National Institute for Occupational Safety and Health (NIOSH) pre-certification laboratory. The data demonstrate that N95 masks sterilized using SteraMist iHP technology retain filtration efficiency up to ten cycles, the maximum number tested to date. A typical iHP environment chamber with a volume of ~ 80 m3 can treat ~ 7000 masks and other items (e.g. other PPE, iPADs), making this an effective approach for a busy medical center.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Respiradores N95/virología , Equipo de Protección Personal/virología , Esterilización/métodos , COVID-19/epidemiología , COVID-19/prevención & control , Equipo Reutilizado/estadística & datos numéricos , Humanos , Respiradores N95/provisión & distribución , Pandemias/prevención & control , Equipo de Protección Personal/provisión & distribución , Dispositivos de Protección Respiratoria , SARS-CoV-2/aislamiento & purificación , Estados Unidos/epidemiología
3.
medRxiv ; 2020 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-32743606

RESUMEN

BACKGROUND: In response to supply shortages during the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs or "masks"), which are typically single-use devices in healthcare settings, are routinely being used for prolonged periods and in some cases decontaminated under "reuse" and "extended use" policies. However, the reusability of N95 masks is often limited by degradation or breakage of elastic head bands and issues with mask fit after repeated use. The purpose of this study was to develop a frame for N95 masks, using readily available materials and 3D printing, which could replace defective or broken bands and improve fit. RESULTS: An iterative design process yielded a mask frame consisting of two 3D-printed side pieces, malleable wire links that users press against their face, and cut lengths of elastic material that go around the head to hold the frame and mask in place. Volunteers (n= 41; average BMI= 25.5), of whom 31 were women, underwent qualitative fit with and without mask frames and one or more of four different brands of FFRs conforming to US N95 or Chinese KN95 standards. Masks passed qualitative fit testing in the absence of a frame at rates varying from 48 - 92% (depending on mask model and tester). For individuals for whom a mask passed testing, 75-100% (average = 86%) also passed testing with a frame holding the mask in place. Among users for whom a mask failed in initial fit testing, 41% passed using a frame. Success varied with mask model and across individuals. CONCLUSIONS: The use of mask frames can prolong the lifespan of N95 and KN95 masks by serving as a substitute for broken or defective bands without adversely affecting fit. Frames also have the potential to improve fit for some individuals who cannot fit existing masks. Frames therefore represent a simple and inexpensive way of extending the life and utility of PPE in short supply. For clinicians and institutions interested in mask frames, designs and specifications are provided without restriction for use or modification. To ensure adequate performance in clinical settings, qualitative fit testing with user-specific masks and frames is required.

4.
medRxiv ; 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32511480

RESUMEN

OBJECTIVE: The COVID-19 pandemic has led to widespread shortages of personal protective equipment (PPE) for healthcare workers, including filtering facepiece respirators (FFRs) such as N95 masks. These masks are normally intended for single use, but their sterilization and subsequent reuse could substantially mitigate a world-wide shortage. DESIGN: Quality assurance. SETTING: A sealed environment chamber installed in the animal facility of an academic medical center. INTERVENTIONS: One to five sterilization cycles using ionized hydrogen peroxide (iHP), generated by SteraMist equipment (TOMI; Frederick, MD). MAIN OUTCOME MEASURES: Personal protective equipment, including five N95 mask models from three manufacturers, were evaluated for efficacy of sterilization following iHP treatment (measured with bacterial spores in standard biological indicator assemblies). Additionally, N95 masks were assessed for their ability to efficiently filter particles down to 0.3um and for their ability to form an airtight seal using a quantitative fit test. Filtration efficiency was measured using ambient particulate matter at a university lab and an aerosolized NaCl challenge at a National Institute for Occupational Safety and Health (NIOSH) pre-certification laboratory. RESULTS: The data demonstrate that N95 masks sterilized using SteraMist iHP technology retain function up to five cycles, the maximum number tested to date. Some but not all PPE could also be sterilized using an iHP environmental chamber, but pre-treatment with a handheld iHP generator was required for semi-enclosed surfaces such as respirator hoses. CONCLUSIONS: A typical iHP environment chamber with a volume of ~80 m3 can treat ~7000 masks per day, as well as other items of PPE, making this an effective approach for a busy medical center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...